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ABSTRACT 

Let G be a finite transitive permutat ion group on a finite set S. Let A 

be a nonempty subset of S and denote the pointwise stabilizer of A in G 

by CG(A). Our main result is the following inequality: [G : CG(A)] _~ 
IGlJAi/ISl. 

I. I n t r o d u c t i o n  

Let G be a finite transitive group of permutations of a finite set S of size n. If 

A is a nonempty subset of S of size k, let Ca(A)  denote the pointwise stabilizer 

of A in G. It is well known that  [G : CG(A)] _< n(n  - 1) . . .  (n - k + 1). However, 

as far as we know, no lower bound for [G : Ca(A)] had been described in the 

literature. The main purpose of this paper is to prove that  

[G: CG(A)] _> IGL IAI/Isl. 

The methods of this paper are variations of those used by A. Chermak and 

A. Delgado in their paper A measuring argument for finite groups [1]. While 

their paper dealt with finite groups G acting on a finite group H,  we expand 

the discussion to the case of finite groups G acting on a finite set S. 
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Aviv University under the supervision of Professor Marcel Herzog. 
Received December 25, 2003 

333 



334 A. GOREN Isr. J. Math. 

I I .  T h e  basic def in i t ions  a n d  resu l t s  

Let G be a finite group acting on a finite set S and let A(S) denote the set 

of all nonempty subsets of S. If A 6 A(S), then CG(A) denotes the pointwise 

stabilizer of A, which will be referred to as a s tabi l izer  of G on S. Finally, let 

a > 1 be a real number. 

Definition 1: We define: 

ms = ms(G, S) = max{alAllCG(A)l I A E A(S));  

a M  = aM(G,S)  = {A e A(S)I alAIICG(A)I = ms}; 

aM* = the set of maximal members of aM,  under inclusion; 

a M .  = the set of minimal members of aM,  under inclusion. 

Our first observation is 

LEMMA 1: The subsets aM,  aM* and aM,  of A(S) are dosed under the action 

of G. 

Proof: Obvious. I 

The following lemma contains some basic properties of aM.  In this lemma 

we use the notation Ca(0) = G. 

LEMMA 2: Let A, B E a M  and suppose that either A N B ~ 0 or ms _> [G[. 

Then the following statements hold: 
(1) A U B e a M ;  
(2) Cc(A N B) = CG(A)CG(B); 
(3) i f A N B ~ O ,  t h e n A n B E a M ;  

(4) ff  A N B  = @, then ms = [G[. 

Proof: Since A E aM,  we have 

(2-1) alAIICc(A)[ >_ alAuBI[cG(A U B)[ - 

which, after reduction, yields 

alsI ICc(A)I 
(2-2) alAnSl --< ICe(A) n Ca(B)] = 

with [Ca(AN B)[ = [G I if A N B  = O. 

alAlalBI 
alAnSl ICG(A U U)l 

ICG(A)CG(B)I < ICG(A O B)I 
ICG(B)I - ICG(B)I 

Suppose, first, that  A A B  ~ 0. Then it follows from (2-2) that aIBIICG(B)[ <_ 
a[AnBI[CG(A N B)[, and since B 6 aM,  the equality must hold. This implies 



Vol. 145, 2005A MEASURING ARGUMENT FOR FINITE PERMUTATION GROUPS335 

that A M B E a M  and equalities holds throughout the expressions (2-1) and 

(2-2). In particular, as A E a M ,  the equality in (2-1) implies that  A U B E a M  

and the equalities in (2-2) imply that  C a ( A  M B) = C a ( A ) C a ( B )  holds. We 

have shown that (1), (2) and (3) hold in this case, as claimed. 

Suppose, now, that A M B = 0. In this case aISliCc(B)] = m s  >_ ]G] and 

(2-2) implies alBI[Ca(B)[ < [G[. Hence ms  = [GI and consequently equalities 

hold throughout the expressions (2-1) and (2-2). In particular, A U B E a M  

and G = CG(A)Ca(B)  hold. We have shown that (1), (2) and (4) hold in this 

case, as claimed. 

The proof of the lemma is complete. I 

Lemmas 1 and 2 yield the following results about  the subsets aM* and a M ,  

of a M .  

LEMMA 3: I r A  E aM* U a M , ,  then A is a block for G on S. 

Proof" Since A E a M ,  Ag E a M  for every g E G. IfAMAg ~ 0 for some g E G, 

then b y L e m m a 2 ,  A U A g E a M a n d A M A g E a M .  B u t A M A g C _ A C _ A U A g  

and A E aM* U a M . ,  hence either A = A U Ag or A = A M Ag. Consequently 

A = Ag, which implies that A is a block. I 

LEMMA 4: 

(1) I f m ~  >_ ]G], then aM* = {U}, where U =def UaM.  Moreover, U g = U 

for all g E G and Ca(U)  ¢ G. 

(2) I f  m~ > ]G], then a M ,  = {I}, where I =def MaM. Moreover, I g = I For 

a11 g E G and Ca(I )  ~ G. 

Proof: If ms  > [G[, then it follows by Lemma 2(1) that U 6 a M  and con- 

sequently aM*  = {U}. If g E G, then by Lemma 1, U g = U and hence 

(CG(U)) g = Ca(U g) = Co(U).  The proof of (1) is complete. 

If ms  > [G[, then by Lemma 2(4), A M B  # 0 for all A , B  E a M  and 

consequently, by Lemma 2(3), I E a M .  Hence a M ,  = {I} and by Lemma 1, 

I g = I for all g E G. This implies that  (Co(I))  g = C a ( I  g) = Ca(I )  for all 

g E G, and the proof of (2) is complete. I 

Remark: Clearly we can choose a so that either of the conditions in Lemma 

4 holds. In particular, if a _> [G[ 1/Isl, then a Is] >_ [G[ and we get ms  > 

alS][cG(s)[ >_ [G]. Similarly, a > [GI i/Isl implies that  m ,  > [G[. 

We now turn our attention to finite transitive permutation groups G, acting 

on finite sets S satisfying a ISI > [G[. We denote by T the set of triples (G, S, a) 
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satisfying these conditions. In this case CG(S) = 1 and ms ___ alSl ~ IGI. We 

shall also use the notation U and I introduced in Lemma 4. 

LEMMA 5: Let ( G , S , a )  E T .  Then S 6 a M  and ma = a Isl >_ IGI. I f  

a lsl > [GI, then a M  = {S} and ma = a Isl > [G[. 

Proof'. Since m~ _ IGI, it follows by Lemma 4(1) that  U is closed under the 

action of G. But G is transitive on S, so U = S E a M  and ma = a Isl >_ IGI . 

If a s > IGI, similar considerations yield, in view of Lemma 4(2), that  I = S, 

which implies that  a M  = {S} and ms  = a Isl > [G[. I 

LEMMA 6: Let (G, S, a) E T.  Then the action of G on a M ,  is transitive. In 

particular, i rA ,  B E a M , ,  then IAI = IB[. 

Proof: Let A, B E a M , .  By Lemma 1 it suffices to prove that  B = Ag for 

some g E G. Let a E A and b E B. Since G is transitive on S, there exists 

g E G s u c h t h a t  b = a g .  B y L e m m a l ,  Ag E a M ,  and s i n c e b E  B n A g ,  it 

follows by Lemma 2(3) that  B ¢q Ag E a M .  But B and Ag are minimal in a M  

under inclusion, so B = A g, as required. I 

We end this section with a result dealing with a finite simple permutation 

group, not necessarily transitive, acting on a nonempty finite set S. It turns 

out that  in this case the results of Lemma 5 also hold. We still use the notation 

of Lemma 4. 

LEMMA 7: Let G be a finite simple permutation group on a finite set S and 

suppose that a Isl > Ial. Then S 6 a M  and m s  = a tsl > IGI. I f  a Isl > IGI, 
then a M  = {S} and m~ = a ISI > IGI. 

Proof: Since ma _> IG[, it follows by Lemma 4(1) that  aM* = {U} and 

Ca(U),~G. Since U • 0, CG(U) ~ G, and the simplicity of G forces CG(U) = 1. 

Hence aISI <_ ma = alUI, yielding S = U E a M  and m s  = alSl >_ IG]. In the 

case when alSl > IGI, Lemma 4(2) similarly yields I = U = S, which implies 

a M  = {S} and ms  = atSl > IGI. I 

III. D o m i n a t e d  stabil izers 

In this section we define and investigate finite permutation groups with "domi- 

nated stabilizers". From these investigations the main results of this paper will 

emerge. 
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Definition 2: Let G be a finite permutation group of the nonempty finite set 

S. We say that  G has d o m i n a t e d  s tabi l izers  on S if for each A C_ S, the 

following inequality holds: 

ICG(A)I _< IGII-I AI/Isl. 

If for each nonempty proper subset A of S we have ]Ca(A)[ < iG[ 1-1AI/ISI, then 

we say that  G has s t r i c t ly  d o m i n a t e d  s tabi l izers  on S. 

Concerning G, S and a we shall also use the assumptions and the notation 

of Definition 1. We start with 

PROPOSITION 8: Let G be a finite permutation group of the nonempty finite 
set S and suppose that alSl = ]G]. Then 

(1) G has dominated stabilizers on S if  and only if  S E aM; 

(2) G has strictly dominated stabilizers on S if  and only if  a M  = {S}. 

Proof." If S e aM,  then ma = alSl, so for each A C_ S we have alAI[cG(A)[ < 
alSI. Hence 

ICG(A)[ ~ al Sl-lAI : ([GIUISl)ISI-IAI = [GII-IAI/ISI, 

which implies that  G has dominated stabilizers on S. If, moreover, a M  = {S}, 

then for each nonempty proper subset A of S we have ]Ca(A)I < IG[ 1-1AI/IS], 

implying that  G has strictly dominated stabilizers on S. 

Conversely, if G has dominated stabilizers on S, then for each A C_ S we have 

ICa(A)l < [GI 1-1AI/Isl = (IGI1/Isl) Isl-lAI = alsl-lAI, 

whence alAIICa(A)I <_ a Isl and it follows that  S E a M .  Similarly, if G has 

strictly dominated stabilizers, then for each nonempty proper subset A of S we 

have alAIICG(A)[ < alSl, which implies that  a M  = {S}. | 

Our main result in this paper is 

THEOREM 9: Let G be a finite permutation group on a finite set S. I f  A C_ S 

and G is either transitive on S or a simple group, then the following inequality 

holds: 

(9-1) [G: Ca(A)] _> IGI IAI/isl. 

Proof." Let a = IG[ 1/Isl. If G is transitive on S, then, by Lemma 5, S E a M  

and by Proposition 8 [Ca(A)] _< IGI 1-1AI/Isl, which implies the inequality (9-1). 
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Similarly, if G is a simple group, then, by Lemma 7, S E a M  and again 

Proposition 8 yields the required inequality. I 

We conclude this paper with the following result dealing with simple transitive 

permutation groups. 

COROLLARY 10: Let G be a finite simple transitive permutation group on a 

finite set S. Then G has strictly dominated stabilizers on S. 

Proof'. Since G is simple, IS I k 2. By Theorem 9, G has dominated stabilizers 

on S. Let a = ]GIUISI. Then by Lemma 5, S E a M  and by Lemma 6, 

T :def aM,  consists of subsets of S of equal size. If T consists of sets of size 

1, then {a} E T for s o m e a  E S a n d m s  = alCa(a)l = a Isl = IG I. Hence 

ISI = [G: Ca(a)] = a and IGI = alSl = ISilSl ' a contradiction, since I G] _< ISI !. 

Thus T consists of sets of size 2 at least. 

By Proposition 8(2) it suffices to show that  a M  = {S}, or equivalently, that  

S E T. If ITI = 1 and A E T, then, by Lemma 1, A is closed under the action 

of G and it follows by the transitivity of G that  A = S E T, as required. So we 

may assume that  I T] > 1. 

We proceed by induction on S. If IS] = 2, then S E aM,  and since a M  

contains no sets of size 1, as shown above, it follows that  a M  = {S}, as required. 

So suppose that  I S] = k > 2 and the corollary holds for all S with ISI < k. We 

may assume that  S • T. By Lemma 1, T = {Ag I g E G} for some A C S and 

we may assume that  1 < ]A I < IS I. Moreover, by Lemma2(3) ,  i fA ,  B E T 

are distinct and A M B # 0, then A M B E aM,  which is a contradiction, since 

T = aM. .  Since G is transitive on S, it follows that  S is a disjoint union of 

elements of T. Hence 1 < ITI = IS]/I A] < ISI . Consider the transitive action 

of G on T and let N = Ca(T).  T h e n N  ~ G. I f N  = G, then it follows by 

the transitivity of G on S that  A = S E T, as required. So N = 1 and G is a 

transitive permutation group of T. Since I T] < IS], it follows by induction that  

G has strictly dominated stabilizers on T. Thus, as I T] > 1, it follows that  

ICc(A)l _< INa(A)l < Ial  1-1 lIT.  = IGI x-lAI/Isl, 

where Na(A)  denotes the pointwise stabilizer of A in the action of G on T, 

which is equal to the stabilizer of A in the action of G on S. But A, S E a M ,  

so ICe(A)] = [G[ 1-1AI/ISI, a contradiction. This completes the proof of the 

corollary. 1 
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