A MEASURING ARGUMENT FOR FINITE PERMUTATION GROUPS

BY

AVI GOREN*

School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel e-mail: mgoren@netvision.net.il

ABSTRACT

Let G be a finite transitive permutation group on a finite set S. Let A be a nonempty subset of S and denote the pointwise stabilizer of A in G by $C_G(A)$. Our main result is the following inequality: $[G: C_G(A)] \ge |G|^{|A|/|S|}$.

I. Introduction

Let G be a finite transitive group of permutations of a finite set S of size n. If A is a nonempty subset of S of size k, let $C_G(A)$ denote the pointwise stabilizer of A in G. It is well known that $[G: C_G(A)] \leq n(n-1) \cdots (n-k+1)$. However, as far as we know, no lower bound for $[G: C_G(A)]$ had been described in the literature. The main purpose of this paper is to prove that

$$[G: C_G(A)] \ge |G|^{|A|/|S|}.$$

The methods of this paper are variations of those used by A. Chermak and A. Delgado in their paper A measuring argument for finite groups [1]. While their paper dealt with finite groups G acting on a finite group H, we expand the discussion to the case of finite groups G acting on a finite set S.

^{*} This paper is a part of the author's Ph.D. thesis research, carried out at Tel Aviv University under the supervision of Professor Marcel Herzog. Received December 25, 2003

II. The basic definitions and results

Let G be a finite group acting on a finite set S and let $\mathcal{A}(S)$ denote the set of all nonempty subsets of S. If $A \in \mathcal{A}(S)$, then $C_G(A)$ denotes the pointwise stabilizer of A, which will be referred to as a **stabilizer** of G on S. Finally, let $\alpha > 1$ be a real number.

Definition 1: We define:

$$m_{\alpha} = m_{\alpha}(G, S) = \max\{\alpha^{|A|} | C_G(A) || A \in \mathcal{A}(S)\};$$

$$\alpha M = \alpha M(G, S) = \{A \in \mathcal{A}(S) | \alpha^{|A|} | C_G(A) | = m_{\alpha}\};$$

 $\alpha M^* =$ the set of maximal members of αM , under inclusion;

 $\alpha M_* =$ the set of minimal members of αM , under inclusion.

Our first observation is

LEMMA 1: The subsets αM , αM^* and αM_* of $\mathcal{A}(S)$ are closed under the action of G.

Proof: Obvious.

The following lemma contains some basic properties of αM . In this lemma we use the notation $C_G(\emptyset) = G$.

LEMMA 2: Let $A, B \in \alpha M$ and suppose that either $A \cap B \neq \emptyset$ or $m_{\alpha} \geq |G|$. Then the following statements hold:

- (1) $A \cup B \in \alpha M$;
- (2) $C_G(A \cap B) = C_G(A)C_G(B);$
- (3) if $A \cap B \neq \emptyset$, then $A \cap B \in \alpha M$;

(4) if $A \cap B = \emptyset$, then $m_{\alpha} = |G|$.

Proof: Since $A \in \alpha M$, we have

(2-1)
$$\alpha^{|A|}|C_G(A)| \ge \alpha^{|A\cup B|}|C_G(A\cup B)| = \frac{\alpha^{|A|}\alpha^{|B|}}{\alpha^{|A\cap B|}}|C_G(A\cup B)|$$

which, after reduction, yields

(2-2)
$$\frac{\alpha^{|B|}}{\alpha^{|A\cap B|}} \le \frac{|C_G(A)|}{|C_G(A) \cap C_G(B)|} = \frac{|C_G(A)C_G(B)|}{|C_G(B)|} \le \frac{|C_G(A\cap B)|}{|C_G(B)|}$$

with $|C_G(A \cap B)| = |G|$ if $A \cap B = \emptyset$.

Suppose, first, that $A \cap B \neq \emptyset$. Then it follows from (2-2) that $\alpha^{|B|}|C_G(B)| \leq \alpha^{|A \cap B|}|C_G(A \cap B)|$, and since $B \in \alpha M$, the equality must hold. This implies

that $A \cap B \in \alpha M$ and equalities holds throughout the expressions (2-1) and (2-2). In particular, as $A \in \alpha M$, the equality in (2-1) implies that $A \cup B \in \alpha M$ and the equalities in (2-2) imply that $C_G(A \cap B) = C_G(A)C_G(B)$ holds. We have shown that (1), (2) and (3) hold in this case, as claimed.

Suppose, now, that $A \cap B = \emptyset$. In this case $\alpha^{|B|}|C_G(B)| = m_{\alpha} \ge |G|$ and (2-2) implies $\alpha^{|B|}|C_G(B)| \le |G|$. Hence $m_{\alpha} = |G|$ and consequently equalities hold throughout the expressions (2-1) and (2-2). In particular, $A \cup B \in \alpha M$ and $G = C_G(A)C_G(B)$ hold. We have shown that (1), (2) and (4) hold in this case, as claimed.

The proof of the lemma is complete.

Lemmas 1 and 2 yield the following results about the subsets αM^* and αM_* of αM .

LEMMA 3: If $A \in \alpha M^* \cup \alpha M_*$, then A is a block for G on S.

Proof: Since $A \in \alpha M$, $A^g \in \alpha M$ for every $g \in G$. If $A \cap A^g \neq \emptyset$ for some $g \in G$, then by Lemma 2, $A \cup A^g \in \alpha M$ and $A \cap A^g \in \alpha M$. But $A \cap A^g \subseteq A \subseteq A \cup A^g$ and $A \in \alpha M^* \cup \alpha M_*$, hence either $A = A \cup A^g$ or $A = A \cap A^g$. Consequently $A = A^g$, which implies that A is a block.

Lemma 4:

- (1) If $m_{\alpha} \geq |G|$, then $\alpha M^* = \{U\}$, where $U =_{def} \cup \alpha M$. Moreover, $U^g = U$ for all $g \in G$ and $C_G(U) \triangleleft G$.
- (2) If $m_{\alpha} > |G|$, then $\alpha M_* = \{I\}$, where $I =_{def} \cap \alpha M$. Moreover, $I^g = I$ for all $g \in G$ and $C_G(I) \triangleleft G$.

Proof: If $m_{\alpha} \geq |G|$, then it follows by Lemma 2(1) that $U \in \alpha M$ and consequently $\alpha M^* = \{U\}$. If $g \in G$, then by Lemma 1, $U^g = U$ and hence $(C_G(U))^g = C_G(U^g) = C_G(U)$. The proof of (1) is complete.

If $m_{\alpha} > |G|$, then by Lemma 2(4), $A \cap B \neq \emptyset$ for all $A, B \in \alpha M$ and consequently, by Lemma 2(3), $I \in \alpha M$. Hence $\alpha M_* = \{I\}$ and by Lemma 1, $I^g = I$ for all $g \in G$. This implies that $(C_G(I))^g = C_G(I^g) = C_G(I)$ for all $g \in G$, and the proof of (2) is complete.

Remark: Clearly we can choose α so that either of the conditions in Lemma 4 holds. In particular, if $\alpha \geq |G|^{1/|S|}$, then $\alpha^{|S|} \geq |G|$ and we get $m_{\alpha} \geq \alpha^{|S|}|C_G(S)| \geq |G|$. Similarly, $\alpha > |G|^{1/|S|}$ implies that $m_{\alpha} > |G|$.

We now turn our attention to finite transitive permutation groups G, acting on finite sets S satisfying $\alpha^{|S|} \geq |G|$. We denote by \mathcal{T} the set of triples (G, S, α) satisfying these conditions. In this case $C_G(S) = 1$ and $m_{\alpha} \ge \alpha^{|S|} \ge |G|$. We shall also use the notation U and I introduced in Lemma 4.

LEMMA 5: Let $(G, S, \alpha) \in \mathcal{T}$. Then $S \in \alpha M$ and $m_{\alpha} = \alpha^{|S|} \geq |G|$. If $\alpha^{|S|} > |G|$, then $\alpha M = \{S\}$ and $m_{\alpha} = \alpha^{|S|} > |G|$.

Proof: Since $m_{\alpha} \geq |G|$, it follows by Lemma 4(1) that U is closed under the action of G. But G is transitive on S, so $U = S \in \alpha M$ and $m_{\alpha} = \alpha^{|S|} \geq |G|$. If $\alpha^{S} > |G|$, similar considerations yield, in view of Lemma 4(2), that I = S, which implies that $\alpha M = \{S\}$ and $m_{\alpha} = \alpha^{|S|} > |G|$.

LEMMA 6: Let $(G, S, \alpha) \in \mathcal{T}$. Then the action of G on αM_* is transitive. In particular, if $A, B \in \alpha M_*$, then |A| = |B|.

Proof: Let $A, B \in \alpha M_*$. By Lemma 1 it suffices to prove that $B = A^g$ for some $g \in G$. Let $a \in A$ and $b \in B$. Since G is transitive on S, there exists $g \in G$ such that $b = a^g$. By Lemma 1, $A^g \in \alpha M_*$ and since $b \in B \cap A^g$, it follows by Lemma 2(3) that $B \cap A^g \in \alpha M$. But B and A^g are minimal in αM under inclusion, so $B = A^g$, as required.

We end this section with a result dealing with a finite simple permutation group, not necessarily transitive, acting on a nonempty finite set S. It turns out that in this case the results of Lemma 5 also hold. We still use the notation of Lemma 4.

LEMMA 7: Let G be a finite simple permutation group on a finite set S and suppose that $\alpha^{|S|} \ge |G|$. Then $S \in \alpha M$ and $m_{\alpha} = \alpha^{|S|} \ge |G|$. If $\alpha^{|S|} > |G|$, then $\alpha M = \{S\}$ and $m_{\alpha} = \alpha^{|S|} > |G|$.

Proof: Since $m_{\alpha} \geq |G|$, it follows by Lemma 4(1) that $\alpha M^* = \{U\}$ and $C_G(U) \triangleleft G$. Since $U \neq \emptyset$, $C_G(U) \neq G$, and the simplicity of G forces $C_G(U) = 1$. Hence $\alpha^{|S|} \leq m_{\alpha} = \alpha^{|U|}$, yielding $S = U \in \alpha M$ and $m_{\alpha} = \alpha^{|S|} \geq |G|$. In the case when $\alpha^{|S|} > |G|$, Lemma 4(2) similarly yields I = U = S, which implies $\alpha M = \{S\}$ and $m_{\alpha} = \alpha^{|S|} > |G|$.

III. Dominated stabilizers

In this section we define and investigate finite permutation groups with "dominated stabilizers". From these investigations the main results of this paper will emerge. Definition 2: Let G be a finite permutation group of the nonempty finite set S. We say that G has **dominated stabilizers** on S if for each $A \subseteq S$, the following inequality holds:

$$|C_G(A)| \le |G|^{1-|A|/|S|}.$$

If for each nonempty proper subset A of S we have $|C_G(A)| < |G|^{1-|A|/|S|}$, then we say that G has strictly dominated stabilizers on S.

Concerning G, S and α we shall also use the assumptions and the notation of Definition 1. We start with

PROPOSITION 8: Let G be a finite permutation group of the nonempty finite set S and suppose that $\alpha^{|S|} = |G|$. Then

- (1) G has dominated stabilizers on S if and only if $S \in \alpha M$;
- (2) G has strictly dominated stabilizers on S if and only if $\alpha M = \{S\}$.

Proof: If $S \in \alpha M$, then $m_{\alpha} = \alpha^{|S|}$, so for each $A \subseteq S$ we have $\alpha^{|A|}|C_G(A)| \leq \alpha^{|S|}$. Hence

$$|C_G(A)| \le \alpha^{|S| - |A|} = (|G|^{1/|S|})^{|S| - |A|} = |G|^{1 - |A|/|S|},$$

which implies that G has dominated stabilizers on S. If, moreover, $\alpha M = \{S\}$, then for each nonempty proper subset A of S we have $|C_G(A)| < |G|^{1-|A|/|S|}$, implying that G has strictly dominated stabilizers on S.

Conversely, if G has dominated stabilizers on S, then for each $A \subseteq S$ we have

$$|C_G(A)| \le |G|^{1-|A|/|S|} = (|G|^{1/|S|})^{|S|-|A|} = \alpha^{|S|-|A|},$$

whence $\alpha^{|A|}|C_G(A)| \leq \alpha^{|S|}$ and it follows that $S \in \alpha M$. Similarly, if G has strictly dominated stabilizers, then for each nonempty proper subset A of S we have $\alpha^{|A|}|C_G(A)| < \alpha^{|S|}$, which implies that $\alpha M = \{S\}$.

Our main result in this paper is

THEOREM 9: Let G be a finite permutation group on a finite set S. If $A \subseteq S$ and G is either transitive on S or a simple group, then the following inequality holds:

(9-1)
$$[G: C_G(A)] \ge |G|^{|A|/|S|}.$$

Proof: Let $\alpha = |G|^{1/|S|}$. If G is transitive on S, then, by Lemma 5, $S \in \alpha M$ and by Proposition 8 $|C_G(A)| \leq |G|^{1-|A|/|S|}$, which implies the inequality (9-1).

Similarly, if G is a simple group, then, by Lemma 7, $S \in \alpha M$ and again Proposition 8 yields the required inequality.

We conclude this paper with the following result dealing with simple transitive permutation groups.

COROLLARY 10: Let G be a finite simple transitive permutation group on a finite set S. Then G has strictly dominated stabilizers on S.

Proof: Since G is simple, $|S| \ge 2$. By Theorem 9, G has dominated stabilizers on S. Let $\alpha = |G|^{1/|S|}$. Then by Lemma 5, $S \in \alpha M$ and by Lemma 6, $T =_{\text{def}} \alpha M_*$ consists of subsets of S of equal size. If T consists of sets of size 1, then $\{a\} \in T$ for some $a \in S$ and $m_{\alpha} = \alpha |C_G(a)| = \alpha^{|S|} = |G|$. Hence $|S| = [G : C_G(a)] = \alpha$ and $|G| = \alpha^{|S|} = |S|^{|S|}$, a contradiction, since $|G| \le |S|!$. Thus T consists of sets of size 2 at least.

By Proposition 8(2) it suffices to show that $\alpha M = \{S\}$, or equivalently, that $S \in T$. If |T| = 1 and $A \in T$, then, by Lemma 1, A is closed under the action of G and it follows by the transitivity of G that $A = S \in T$, as required. So we may assume that |T| > 1.

We proceed by induction on S. If |S| = 2, then $S \in \alpha M$, and since αM contains no sets of size 1, as shown above, it follows that $\alpha M = \{S\}$, as required. So suppose that |S| = k > 2 and the corollary holds for all S with |S| < k. We may assume that $S \notin T$. By Lemma 1, $T = \{A^g | g \in G\}$ for some $A \subset S$ and we may assume that 1 < |A| < |S|. Moreover, by Lemma 2(3), if $A, B \in T$ are distinct and $A \cap B \neq \emptyset$, then $A \cap B \in \alpha M$, which is a contradiction, since $T = \alpha M_*$. Since G is transitive on S, it follows that S is a disjoint union of elements of T. Hence 1 < |T| = |S|/|A| < |S|. Consider the transitive action of G on T and let $N = C_G(T)$. Then $N \leq G$. If N = G, then it follows by the transitivity of G on S that $A = S \in T$, as required. So N = 1 and G is a transitive permutation group of T. Since |T| < |S|, it follows by induction that G has strictly dominated stabilizers on T. Thus, as |T| > 1, it follows that

$$|C_G(A)| \le |N_G(A)| < |G|^{1-1/|T|} = |G|^{1-|A|/|S|},$$

where $N_G(A)$ denotes the pointwise stabilizer of A in the action of G on T, which is equal to the stabilizer of A in the action of G on S. But $A, S \in \alpha M$, so $|C_G(A)| = |G|^{1-|A|/|S|}$, a contradiction. This completes the proof of the corollary.

Vol. 145, 2005 A MEASURING ARGUMENT FOR FINITE PERMUTATION GROUPS 339

References

[1] A. Chermak and A. Delgado, A measuring argument for finite groups, Proceedings of the American Mathematical Society **107** (1989), 907–914.